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AbslnlCI-The approach to crack-microcrack array interaction problems developed in Part I is
applied here to two configurations involving one and two microcracks. These configurations,
although simple, exhibit the important effects or stress 'shielding' and stress 'amplification' (reduction
or increase or the effective stress intensity ractor due to the presence or microcracks) occurring in
more complex microcrack arrays; they also illustrate the refinements introduced by higher order
polynomial approximations.

1. MICROCRACK COLLINEAR TO THE MAIN CRACK (PIECEWISE CONSTANT

APPROXIMATION)

The problem of elastic interaction of the main crack (-/0 , 10 ) with one microcrack (c - 1,
c + 1) located on a continuation of the main crack's line (Fig. I) is considered. Plane stress
conditions and Mode I uniform remote loading are assumed; the microcrack is assumed
to be embedded into the main crack tip stress field ('small scale microcracking'). In a
piecewise constant approximation, we approximate this field within the microcrack line
(c - 1, c + 1) by a constant equal to the value of the field at the microcrack center x = c.
Because of symmetry, (J yy = (Jyy(c) is the only stress component acting along the microcrack
line. Thus, the overall stress field in the vicinity of the main crack tip is given by a
superposition
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where
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O'(xl = a(x) + u'(x)

"( ) _ Keff rp[8(x)]
0' x - I

J(2rrr(x»
(I)

(2)

and T" {u(x)} denotes the stress operator transforming a displacement field into stresses in
accordance with Hooke's law: 1jj{u} = Jl.(ui,j + Uj,i) + AUt,ke5ij (index "x" indicates that the
differentiation is performed with respect to x). The microcrack's COD is elliptical (since
in a piecewise constant approximation the microcrack is subjected to a uniform stress
0',,(c» and is given by

41 Kjff
bW = EJ(2rr(1 + 15» e(~)n (3)

where E is Young's modulus, n the unit vector in the y-direction and
e(~) = J(1 - (~ - c)2/12) is an ellipse of the unit opening with the extremities at the
microcrack tips. Substitution of eqn (3) into eqn (2) and introduction of the stress operator
Tx under the integral yields

(4)

After integration O'~y(x) appears in the form

(5)

Substitution into the equation for effective stress intensity factor

(6)

(KP = 0'ooJ(rrlo) is the stress intensity factor in the absence of the microcrack) yields the
following equation for Kjff: Kjff = KP + qKjff, so that

where

11 J( )_ 1 1 +t 1 Id
q - J(2([, + 15'» -1 1 - t J(1 - ['2/(t _ C')2) - t

(7)

(8)

and l' = 1/10 , e5' = e5/10 , c' = c/lo are nondimensional geometrical parameters. The graph of
Kjff/KP vs 15/1 is given in Figs 2 and 3. When the distance between two cracks tends to
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zero Kjff -+ 00.

The resulting stress field in the vicinity of the main crack tip can now be written as

{ f+l }Kerf cpil6(x)] + 4/ 1 <1> + <1> + ),<1> b d
I J(21tr(x)) EJ(21t(/ + 15)) ,-I Jl( 2i.i 2i,i) • 2k,t iA~) ~ (9)

where Kjff is given by eqn (7). This expression gives the solution of the problem in the
piecewise constant approximation.

The problem considered involves just one microcrack and the iterative approach
is unnecessary; furthermore, Kjff is obtained in the form of eqn (7) even if poly
nomial approximations of higher orders are used (see Section 2). It appears to be of
interest, however, to find physical meaning of the iterations. Solving the equation
Kjff = K? + qKjff by iterations yields: Kjff = K?; Kjfr = (1 + q)K?;
Kjff = (1 + q + q2)K?; ... - a geometrical series representation of the solution
Kjff = K?(l - q). Having in mind that the first two terms in braces in eqn (9) give the
main crack tip field and the microcrack-generated field, correspondingly, and that the
parameter q reflects the impact of the microcrack-generated field on Kjff, the iterations
can be interpreted by means of the diagram in Fig. 4. The first line presents terms in cr(x)
corresponding to Kjff = K? (zeroth iteration), the second line corresponds to the term
qK? added to Kjff in the first iteration and the third line corresponds to the term q2K?
added in the second iteration. Thus, the higher order iterations represent the crack
interactions of higher multiplicity.

2. MICROCRACK COLLINEAR TO THE MAIN CRACK (HIGHER ORDER

APPROXIMATIONS)

The same problem is reconsidered here on the basis of higher order polynomial
approximations, and the corrections to the piecewise constant approximation are examined.
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2.1. Linear approximation
In the linear approximation, the stress ayy induced along the microcrack line 1by the

main crack tip is assumed to change linearly along 1(since ayy is the only relevant stress
component - other components vanish along the line of the crack, the yy-index is omitted
in this section)

a(x) = a(e) + a'(e)(x - e)

where

u(e) = Krff/J(27t(l + b»

u'(e) = (~~)x=< = -Krff
/2(l + b)J(2rr(l + 15»

so that, in dimensionless form

K
eff

I [ x' - e' ]
a(x') =)1

0
J(27t(t' + 15')) 1- 2(t' + 15') .

(10)

(II)

(12)

(13)

According to the polynomial conservation theorem, a polynomial loading of degree P
generates the elliptical COD multiplied by the polynomial of the same degree ,P. Therefore,
instead of eqn (10), we have

(14)

where bo and bI are certain coefficients of the length dimensions. According to eqn (2), the
COD, eqn (3), corresponds to the following traction on the microcrack line

(15)

Evaluation of the integral when x' e (e' - l', e' + 1') yields

(16)

(Evaluating the integral we used the relZularization described in Part U C:omnl'lrinp tWI"l
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different expressions, eqns (10) and (16), for the same linear function, one obtains:
bo = (I/E)h(c'), b1 = (1/2)(ljE)h'(c'). Substitution of the later relations into eqn (15) results
in the expression for the stress ql generated by the microcrack on the continuation of its
line (i.e. along the x-axis outside the interval (c - I, c + 1)) in the form of linear combination
of h(c') and h'(c')

{[ ( I' )2J-1/2 } 1 {[ (I' YJ- 1/2
ql(X') = h(c') 1 - x' _ e' - 1 - 2:(e' - x')h'(e') 1 - x' _ e')

[ (
I' )2J1/2 }+ 1- -- -2 .

x'- e'
(17)

Substituting eqn (17) into expression (6) for Kirr results in the equation which, together
with eqns (11) and (12), constitutes a system of three linear algebraic equations for q(e),
q'(e) and Kin. The solution for Kirr yields eqn (7) with

1 1
q = fc (I c5) + r (I a) = q + q (18)

nj(2{l' + c5'» 0 , 4n(1' + c5')j(2(/' + c5,))Jl' - 0 1

where the following notations are introduced

[ +1 e(e) {[ (I )J-1/2 }Io(e', x') = I 2de = n 1 - -- - 1
<_I (e - x) x-e

[ +1 eW {[ (I )2J1/2 }
11(e', x') = I <_I e _ x de = n(x' - e') 1 -;=c - 1 .

(19)

(20)

(21)

(22)

The coefficients qo and ql' are responsible for an increase of the effective stress intensity
factor Kirr due to elliptic microcrack opening and due to linear deviation of elliptic shape,
correspondingly.

General superposition formula gives the resulting stress field in the form

{ [ +I[ J }Kerr q1[8(x)] 41 1 T 1 e- e d
q(x) = I j(2nr(x» + E' j(2n(1 + a» JC <_I - 4(1 + a) e(e)n(e)' cD(e. x) e .

(23)

The second term in brackets in the integrand represents the correction due to the linear
approximation (as compared to the piecewise constant approximation). Figure 5 shows
the graphs of KjrrjKp for the linear (upper curve) and piecewise constant (lower curve)
approximations. The curves diverge when the distance between the cracks becomes very
small.
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It should be noted that the solution obtained gives a low estimate for both k~H and the
stress field tJ'(x), since it corresponds to an approximation of the curve a(x) by the straight
line tangent to the curve at the center C of the microcrack. The upper bound can be
obtained by taking a chord passing through the end points of the microcrack. The result
of calculations based on the chord linear approximation are shown in Fig. 6 (upper curve),
together with the results based on the tangent linear approximation (lower curve). The
dashed curve represents the exact solution for Krrr taken from Ref. [I] and is expressible
in elliptic functions. The two linear approximations yield results which are close to each
other and to the exact solution unless the distance between the cracks becomes very small.

2.2. Higher order approximations
Although, as Fig. 6 shows, linear approximation gives good agreement with the exact

solution in the problem considered, the structure of the higher order approximations
appear to be of interest.

In the quadratic approximation, the main crack tip field a is approximated by a
second-order Taylor's polynomial on the microcrack

( ' ')2
a(x') = a(e') + a'(e'Xx' - e') + a"(e') x - c

2! (24)

where

q(PI(e') = Kerr~( I \ .
J dxP J(21CX')}".=/

p = 0,1,2. (25)

This, according to the polynomial conservation theorem, implies that the microcrack's
COD can be represented in the form
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(26)

which, in accordance with the potential representation, eqn (2), corresponds to the following
traction on the microcrack

(27)

This traction is a second degree polynomial, and, by comparing the coefficients of eqns
(27) and (24), a linear relationship between the derivatives ct(PI(C) of the main crack tip field
and the coefficients bp can be established

or, in matrix form

2
ctIPI(c) = L B;k t bk

k=O
(28)

(29)

Evaluation of the integrals in eqn (27) yields the following transformation matrix {B}-I

(30)

.
(for a linear approximation, it degenerates into a 2 x 2 matrix obtained from eqn (30) by
crossing out the third row and the third column).

To find the microcrack-generated stress (in terms of its COO) and the corresponding
corrections to K,rr system of eqns (29) has to be solved. The inverse matrix is

0
('2 '

3·4

{B} = i 0
I

0 (31)
E 2

0 0
1

3

and {b} = {B}{ctIPl}. Substituting {U(Pl} from eqn (25) in the latter and substituting the
potential representation for the microcrack-generated stress q'(x') into eqn (6) for Kirr one
obtains a linear algebraic equation for Kirr

(32)

with the terms in parentheses corresponding to piecewise constant, linear and quadratic
approximations, respectively. The quantities qo, ql' and q2 are given by eqns (8) and (18),
and

5A52'\:1-8
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I J(IO) 1 d
2( I ) fl J(I + X')' 2 'q2=:- - 213-d2 -/-- -1-' [(x -c') 10 + 2(x'-c')l j +/2Jdx

n n . x ,,(2nx) x= C _ I x

(33)

where 10 and II are given by egns (21) and (22) and

i
C' + l' nl2

12 =: - e(t)dt =: --,

c' -I' 2
(34)

Note that, as seen from the structure of the matrix {B}, the even (or odd) order coefficients
bo, b2 (or b l ) are related to the even (odd) order derivatives tt(P) only. Note, also, that the
integrals 10 , II and 12 can be expressed in terms ofelementary functions. These observations
hold, as shown below, for higher order approximations as well,

In the general case of the Pth order approximation, the main crack tip stress field
along the microcrack line is represented as

P (x-d
q(x) =: L q~~(c) I

k=O k,

so that the microcrack's COD is given by

P (x - ct
b(x) = 4e(x) k~O bx k! .

Proceeding as above one arrives at the same expression, eqn (7) for K;rr, with

P

q =: L q,
,=0

where

(35)

(36)

(37)

P dk( ) flo J(I ){ic+l(~ 'e(~ }=: 1 L B __1_ 0 + x .. - c) .. ) d~ d
q, nJ(nloh=o 'dxk J(2nx) x=c -/0 10 - X c-l n! (~- X)2 x.

(38)

Matrix {B} relating the derivatives of the main crack tip field and the polynomial coefficients
of the microcrack's COD has the structure similar to the one in the quadratic approximation

0 f302/,2 0 f304/,4 0

0
1

0 f313/,2 0 f315/,4-
2

I 1
f324/' 2 0{B} =- 0 0

3
0 (39)

E

0 0 0
1-
P

where coefficients f3ij are linear combinations of integrals of the type
R(x, J(x 2 + ax + b» (R denotes a rational function) and can, therefore, be expressed in
terms of elementary functions (i, j are not tensorial indices here).

As P --+ 00, formulas (35) and (36) become the Taylor's series for the analytic fields
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u(x) and b(x). The rate of their convergence to the exact solution will depend on the ratio
bll. Indeed, the convergence in formula (38) depends on the behavior of the following series

(40)

where

f(~,x) = e(W(~ - X)2. JC: ~ :).
Taking into account that

d
k

( 1 )
dxk .j(21tx) x=c

and that

(-I)k(2k - I)!!
(41)

can be bounded as follows

I
LL B ~(_1_) £+1 (~ - c)nf(~ )\

n>k>O nk dxk .j(21tx) x=c c-I n! ,x

(42)

(43)

one observes that the series on the right-hand side of inequality (43) is absolutely convergent
and the rate of convergence depends on lJIl.

3. TWO MICROCRACKS PARALLEL TO THE MAIN CRACK

The configuration considered is shown in Fig. 7. Plane stress conditions, mode I
uniform remote loading, and 'small scale microcracking' are assumed. The problem will
be considered in the piecewise constant approximation. Two different effects of crack
interaction may occur depending on the relative values of the geometrical parameters; one
when c » 10 and the microcracks 'amplify' the stress concentration (KfCC > Kf), the other
when c ~ 10 and the microcracks 'shield' the macrocrack tip (KfCC < Kf). In the intermediate
range of clio these two effects compete.

Because of symmetry the boundary conditions on both microcracks are the same.
Therefore, the system of eqns (7) of Part I can be rewritten for this case as follows

OOTx{f b(x')'q,(x',x)dx' + f b(x,).q,(x"X)dX'} = -Kf,ro°CJo(x) (44)
II 12

where xe/1 and the COOs of both microcracks are denoted by b. Under the assumption
of piecewise constant approximation
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b( 1 4/ ( ')x) = -o'ae x
E

(45)

where / = /1 = /2 is the length of each microcrack, and E is Young's modulus. The traction
vector 0 . a is taken at the center of the first microcrack. Thus the components of unknown
vector b are proportional to (12 and (122 components of the resulting stress field a(x) at the
center of the first microcrack. Using eqn (45) we can rewrite eqn (44) in index form

(46)

where x is at the center of the first microcrack. Vectorial eqn (46) represents a system of
two scalar equations for (121 and (122

where

a ll (121 + al2(1n = - Kjff (102'

a21(121 + a22(122 = _Kjff (1022

a22 = ~ [1 + T22{I e(x')¢dx', x) dX'}]

(47)

(48)

(49)

(50)

(51)

and x is the center of the first microcrack.
Solving the system of eqns (47) and substituting the resulting stresses (121 and (122 into

the equation for Kjff completes the solution. Figure 8 shows Kjff as a function of 21/{h/2)
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and demonstrates the 'shielding' effect for the case () = 0 when this effect is maximal.
Similar analysis shows that when both microcracks are moved away from the main

crack, Krff > KP and 'shielding' changes to 'amplification'. In this case, the microcracks
have the same effect on Krff as one microcrack on the continuation of the main crack line.
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